Skip to content

Federated Collaboration Guide

This guide provides best practices, patterns, and resources for implementing secure cross-organization workflows with the AI Agent Orchestration Platform.

1. Introduction to Federated Collaboration

Federated collaboration enables secure workflows across organizational boundaries while maintaining data privacy and sovereignty. Key benefits include:

  • Privacy Preservation: Keep sensitive data within organizational boundaries
  • Regulatory Compliance: Meet data residency and sovereignty requirements
  • Collective Intelligence: Leverage insights across organizations without raw data sharing
  • Resource Sharing: Access specialized agents and capabilities from partners
  • Distributed Governance: Maintain control over organizational assets and policies

2. Federated Architecture

2.1 Federated Collaboration Model

┌─────────────────┐      ┌─────────────────┐      ┌─────────────────┐
│ Organization A  │◄────►│ Secure Gateway  │◄────►│ Organization B  │
└─────────────────┘      └─────────────────┘      └─────────────────┘
      │                         │                         │
      ▼                         ▼                         ▼
┌─────────────────┐      ┌─────────────────┐      ┌─────────────────┐
│ Local Agents    │      │ Access Control  │      │ Local Agents    │
│ Private Data    │      │ Audit Logging   │      │ Private Data    │
│ Local Workflows │      │ Secure Compute  │      │ Local Workflows │
└─────────────────┘      └─────────────────┘      └─────────────────┘

2.2 Federated Components

federated/
├── gateway/
│   ├── secure_gateway.py
│   ├── access_control.py
│   └── audit_logger.py
├── collaboration/
│   ├── federated_workflow.py
│   ├── secure_compute.py
│   └── data_sharing.py
├── learning/
│   ├── federated_learning.py
│   ├── secure_aggregation.py
│   └── differential_privacy.py
├── crypto/
│   ├── homomorphic.py
│   ├── zero_knowledge.py
│   └── secure_multiparty.py
└── registry/
    ├── federated_registry.py
    └── capability_discovery.py

3. Secure Data Sharing

3.1 Data Sharing Principles

  • Minimal Disclosure: Share only what's necessary
  • Purpose Limitation: Define clear purposes for shared data
  • Access Controls: Implement fine-grained permissions
  • Audit Trails: Log all access and operations
  • Encryption: Protect data in transit and at rest
  • Time Limitations: Set expiration for shared access

3.2 Secure Data Sharing Implementation

import json
import uuid
import time
import hashlib
import base64
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding, rsa
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

class SecureDataSharing:
    """Manage secure data sharing between organizations."""

    def __init__(self, org_id, private_key=None, public_keys=None):
        self.org_id = org_id
        self.private_key = private_key
        self.public_keys = public_keys or {}
        self.access_log = []

    def share_data(self, data, recipient_org_id, purpose, expiration_seconds=3600):
        """Share data securely with another organization."""
        if recipient_org_id not in self.public_keys:
            raise ValueError(f"Public key for organization {recipient_org_id} not found")

        # Generate a unique sharing ID
        sharing_id = str(uuid.uuid4())

        # Generate a symmetric key for this sharing
        symmetric_key = Fernet.generate_key()

        # Encrypt the data with the symmetric key
        f = Fernet(symmetric_key)
        encrypted_data = f.encrypt(json.dumps(data).encode())

        # Encrypt the symmetric key with the recipient's public key
        recipient_public_key = self.public_keys[recipient_org_id]
        encrypted_key = recipient_public_key.encrypt(
            symmetric_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA256()),
                algorithm=hashes.SHA256(),
                label=None
            )
        )

        # Create sharing metadata
        metadata = {
            "sharing_id": sharing_id,
            "source_org_id": self.org_id,
            "recipient_org_id": recipient_org_id,
            "purpose": purpose,
            "created_at": time.time(),
            "expires_at": time.time() + expiration_seconds,
            "data_hash": hashlib.sha256(json.dumps(data).encode()).hexdigest()
        }

        # Log the sharing
        self._log_access("share", sharing_id, recipient_org_id, purpose)

        return {
            "sharing_id": sharing_id,
            "encrypted_data": base64.b64encode(encrypted_data).decode(),
            "encrypted_key": base64.b64encode(encrypted_key).decode(),
            "metadata": metadata
        }

    def receive_data(self, encrypted_package):
        """Receive and decrypt shared data."""
        if not self.private_key:
            raise ValueError("Private key not available for decryption")

        # Extract components from the package
        sharing_id = encrypted_package["sharing_id"]
        encrypted_data = base64.b64decode(encrypted_package["encrypted_data"])
        encrypted_key = base64.b64decode(encrypted_package["encrypted_key"])
        metadata = encrypted_package["metadata"]

        # Verify recipient
        if metadata["recipient_org_id"] != self.org_id:
            raise ValueError("This data is not intended for this organization")

        # Check expiration
        if metadata["expires_at"] < time.time():
            raise ValueError("This shared data has expired")

        # Decrypt the symmetric key
        symmetric_key = self.private_key.decrypt(
            encrypted_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA256()),
                algorithm=hashes.SHA256(),
                label=None
            )
        )

        # Decrypt the data
        f = Fernet(symmetric_key)
        decrypted_data = json.loads(f.decrypt(encrypted_data).decode())

        # Verify data integrity
        data_hash = hashlib.sha256(json.dumps(decrypted_data).encode()).hexdigest()
        if data_hash != metadata["data_hash"]:
            raise ValueError("Data integrity check failed")

        # Log the access
        self._log_access("receive", sharing_id, metadata["source_org_id"], metadata["purpose"])

        return {
            "data": decrypted_data,
            "metadata": metadata
        }

    def _log_access(self, action, sharing_id, org_id, purpose):
        """Log data sharing access."""
        self.access_log.append({
            "timestamp": time.time(),
            "action": action,
            "sharing_id": sharing_id,
            "org_id": org_id,
            "purpose": purpose
        })

        # In a real implementation, this would be persisted to a secure audit log
        print(f"[LOG] {action.upper()} - Sharing ID: {sharing_id}, Org: {org_id}, Purpose: {purpose}")

4. Federated Workflows

4.1 Federated Workflow Principles

  • Clear Boundaries: Define explicit interfaces between organizations
  • Minimal Data Transfer: Only share necessary data between workflow steps
  • Distributed Execution: Run steps in the appropriate organizational context
  • Coordinated Orchestration: Maintain workflow state across boundaries
  • Failure Handling: Implement robust error handling and recovery
  • Audit Trail: Maintain comprehensive logs of cross-organization execution

4.2 Federated Workflow Implementation

import uuid
import time
import json
from enum import Enum
from typing import Dict, List, Any, Optional

class StepStatus(Enum):
    PENDING = "pending"
    RUNNING = "running"
    COMPLETED = "completed"
    FAILED = "failed"
    WAITING_FOR_APPROVAL = "waiting_for_approval"

class FederatedWorkflow:
    """Manage workflows that span multiple organizations."""

    def __init__(self, workflow_id=None, name=None, description=None):
        self.workflow_id = workflow_id or str(uuid.uuid4())
        self.name = name or f"Federated Workflow {self.workflow_id[:8]}"
        self.description = description
        self.steps = []
        self.connections = []
        self.current_state = {}
        self.execution_log = []

    def add_step(self, step_id, org_id, agent_id, config=None, approval_required=False):
        """Add a step to the workflow."""
        step = {
            "step_id": step_id,
            "org_id": org_id,
            "agent_id": agent_id,
            "config": config or {},
            "approval_required": approval_required,
            "status": StepStatus.PENDING.value,
            "result": None,
            "error": None,
            "start_time": None,
            "end_time": None
        }

        self.steps.append(step)
        return self

    def add_connection(self, from_step_id, to_step_id, data_mapping=None):
        """Add a connection between steps."""
        connection = {
            "from_step_id": from_step_id,
            "to_step_id": to_step_id,
            "data_mapping": data_mapping or {}
        }

        self.connections.append(connection)
        return self

    def get_next_steps(self, completed_step_id=None):
        """Get the next steps that can be executed."""
        if completed_step_id is None:
            # Find steps with no incoming connections (starting points)
            incoming_steps = set(conn["to_step_id"] for conn in self.connections)
            return [step for step in self.steps if step["step_id"] not in incoming_steps]

        # Find steps connected to the completed step
        next_step_ids = [conn["to_step_id"] for conn in self.connections if conn["from_step_id"] == completed_step_id]
        next_steps = [step for step in self.steps if step["step_id"] in next_step_ids]

        # Check if all incoming connections to these steps are from completed steps
        ready_steps = []
        for step in next_steps:
            incoming_connections = [conn for conn in self.connections if conn["to_step_id"] == step["step_id"]]
            all_dependencies_met = True

            for conn in incoming_connections:
                from_step = next((s for s in self.steps if s["step_id"] == conn["from_step_id"]), None)
                if not from_step or from_step["status"] != StepStatus.COMPLETED.value:
                    all_dependencies_met = False
                    break

            if all_dependencies_met:
                ready_steps.append(step)

        return ready_steps

    def prepare_step_input(self, step_id):
        """Prepare input data for a step based on connections."""
        step = next((s for s in self.steps if s["step_id"] == step_id), None)
        if not step:
            raise ValueError(f"Step {step_id} not found")

        # Find all incoming connections to this step
        incoming_connections = [conn for conn in self.connections if conn["to_step_id"] == step_id]

        # Prepare input data from connected steps
        input_data = {}
        for conn in incoming_connections:
            from_step = next((s for s in self.steps if s["step_id"] == conn["from_step_id"]), None)
            if not from_step or from_step["status"] != StepStatus.COMPLETED.value or from_step["result"] is None:
                continue

            # Apply data mapping
            for source_key, target_key in conn["data_mapping"].items():
                if source_key in from_step["result"]:
                    input_data[target_key] = from_step["result"][source_key]

        # Merge with step config
        return {**step["config"], "input": input_data}

    def execute_step(self, step_id, agent_executor):
        """Execute a single step of the workflow."""
        step = next((s for s in self.steps if s["step_id"] == step_id), None)
        if not step:
            raise ValueError(f"Step {step_id} not found")

        # Check if step is ready to execute
        if step["status"] not in [StepStatus.PENDING.value, StepStatus.WAITING_FOR_APPROVAL.value]:
            return False

        # If approval is required, check if it's been approved
        if step["approval_required"] and step["status"] != StepStatus.WAITING_FOR_APPROVAL.value:
            step["status"] = StepStatus.WAITING_FOR_APPROVAL.value
            self._log_execution(step_id, "waiting_for_approval", None)
            return False

        # Prepare input data
        input_data = self.prepare_step_input(step_id)

        # Update step status
        step["status"] = StepStatus.RUNNING.value
        step["start_time"] = time.time()
        self._log_execution(step_id, "started", input_data)

        try:
            # Execute the agent
            result = agent_executor(step["org_id"], step["agent_id"], input_data)

            # Update step with result
            step["status"] = StepStatus.COMPLETED.value
            step["result"] = result
            step["end_time"] = time.time()
            self._log_execution(step_id, "completed", result)

            return True

        except Exception as e:
            # Handle execution error
            step["status"] = StepStatus.FAILED.value
            step["error"] = str(e)
            step["end_time"] = time.time()
            self._log_execution(step_id, "failed", {"error": str(e)})

            return False

    def approve_step(self, step_id, approver_id, comments=None):
        """Approve a step that requires approval."""
        step = next((s for s in self.steps if s["step_id"] == step_id), None)
        if not step:
            raise ValueError(f"Step {step_id} not found")

        if step["status"] != StepStatus.WAITING_FOR_APPROVAL.value:
            raise ValueError(f"Step {step_id} is not waiting for approval")

        # Update step status
        step["status"] = StepStatus.PENDING.value
        self._log_execution(step_id, "approved", {
            "approver_id": approver_id,
            "comments": comments
        })

        return True

    def reject_step(self, step_id, approver_id, reason=None):
        """Reject a step that requires approval."""
        step = next((s for s in self.steps if s["step_id"] == step_id), None)
        if not step:
            raise ValueError(f"Step {step_id} not found")

        if step["status"] != StepStatus.WAITING_FOR_APPROVAL.value:
            raise ValueError(f"Step {step_id} is not waiting for approval")

        # Update step status
        step["status"] = StepStatus.FAILED.value
        step["error"] = f"Rejected by {approver_id}: {reason or 'No reason provided'}"
        self._log_execution(step_id, "rejected", {
            "approver_id": approver_id,
            "reason": reason
        })

        return True

    def _log_execution(self, step_id, action, data):
        """Log workflow execution events."""
        log_entry = {
            "timestamp": time.time(),
            "workflow_id": self.workflow_id,
            "step_id": step_id,
            "action": action,
            "data": data
        }

        self.execution_log.append(log_entry)

        # In a real implementation, this would be persisted to a secure audit log
        print(f"[WORKFLOW] {action.upper()} - Workflow: {self.workflow_id}, Step: {step_id}")

5. Federated Learning

5.1 Federated Learning Principles

  • Local Training: Train models on local data within organizational boundaries
  • Secure Aggregation: Combine model updates without revealing raw data
  • Differential Privacy: Add noise to protect individual data points
  • Model Encryption: Encrypt model parameters during transmission
  • Secure Enclaves: Use trusted execution environments for sensitive operations
  • Decentralized Coordination: Distribute coordination to avoid central points of failure

5.2 Federated Learning Implementation

import numpy as np
import time
import uuid
import json
from typing import List, Dict, Any, Optional
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
import os

class FederatedLearning:
    """Implement federated learning across organizations."""

    def __init__(self, task_id=None, model_type=None, aggregation_method="fedavg"):
        self.task_id = task_id or str(uuid.uuid4())
        self.model_type = model_type
        self.aggregation_method = aggregation_method
        self.participants = []
        self.global_model = None
        self.round = 0
        self.training_log = []

    def add_participant(self, org_id, data_samples=0, compute_capacity=1.0):
        """Add a participating organization."""
        participant = {
            "org_id": org_id,
            "data_samples": data_samples,  # Number of training samples (for weighting)
            "compute_capacity": compute_capacity,  # Relative compute capacity
            "status": "registered",
            "last_update": None,
            "local_accuracy": None,
            "rounds_participated": 0
        }

        self.participants.append(participant)
        self._log_event("participant_added", {"org_id": org_id})
        return self

    def initialize_global_model(self, model_params):
        """Initialize the global model parameters."""
        self.global_model = {
            "params": model_params,
            "metadata": {
                "created_at": time.time(),
                "updated_at": time.time(),
                "version": 1
            }
        }

        self._log_event("global_model_initialized", {"version": 1})
        return self.global_model

    def get_global_model(self):
        """Get the current global model."""
        if not self.global_model:
            raise ValueError("Global model has not been initialized")

        return self.global_model

    def submit_model_update(self, org_id, model_update, metrics=None, encryption_key=None):
        """Submit a local model update from a participant."""
        participant = next((p for p in self.participants if p["org_id"] == org_id), None)
        if not participant:
            raise ValueError(f"Organization {org_id} is not a registered participant")

        # Decrypt model update if encrypted
        if encryption_key:
            model_update = self._decrypt_model_update(model_update, encryption_key)

        # Update participant status
        participant["status"] = "update_submitted"
        participant["last_update"] = time.time()
        participant["local_accuracy"] = metrics.get("accuracy") if metrics else None
        participant["rounds_participated"] += 1

        # Store the update (in a real implementation, this would be in a secure database)
        update_id = str(uuid.uuid4())
        update_record = {
            "update_id": update_id,
            "org_id": org_id,
            "round": self.round,
            "model_update": model_update,
            "metrics": metrics,
            "timestamp": time.time()
        }

        self._log_event("model_update_received", {
            "org_id": org_id,
            "round": self.round,
            "update_id": update_id
        })

        return update_id

    def aggregate_updates(self, update_ids=None, differential_privacy=False, dp_epsilon=1.0):
        """Aggregate model updates to create a new global model."""
        if not self.global_model:
            raise ValueError("Global model has not been initialized")

        # In a real implementation, we would retrieve updates from a secure database
        # Here we assume updates are available in memory
        updates = []  # This would be populated with actual updates

        # Get participant weights based on data samples
        total_samples = sum(p["data_samples"] for p in self.participants)
        weights = {p["org_id"]: p["data_samples"] / total_samples if total_samples > 0 else 1.0 / len(self.participants)
                  for p in self.participants}

        # Perform weighted aggregation (FedAvg algorithm)
        aggregated_params = self._fedavg(updates, weights)

        # Apply differential privacy if requested
        if differential_privacy:
            aggregated_params = self._apply_differential_privacy(aggregated_params, dp_epsilon)

        # Update the global model
        self.round += 1
        self.global_model["params"] = aggregated_params
        self.global_model["metadata"]["updated_at"] = time.time()
        self.global_model["metadata"]["version"] += 1

        self._log_event("global_model_updated", {
            "round": self.round,
            "version": self.global_model["metadata"]["version"],
            "participants": len(updates)
        })

        # Reset participant status for next round
        for participant in self.participants:
            participant["status"] = "registered"

        return self.global_model

    def _fedavg(self, updates, weights):
        """Implement Federated Averaging algorithm."""
        # This is a simplified implementation
        # In a real system, this would handle tensors and model architectures

        if not updates:
            return self.global_model["params"]

        aggregated_params = {}
        for param_name in self.global_model["params"]:
            # Initialize with zeros of the same shape
            param_shape = np.array(self.global_model["params"][param_name]).shape
            aggregated_params[param_name] = np.zeros(param_shape)

            # Weighted sum of updates
            for update, org_id in updates:
                if param_name in update:
                    weight = weights.get(org_id, 1.0 / len(updates))
                    aggregated_params[param_name] += weight * np.array(update[param_name])

        return aggregated_params

    def _apply_differential_privacy(self, params, epsilon):
        """Apply differential privacy to model parameters."""
        # This is a simplified implementation
        # In a real system, this would use proper DP mechanisms like Gaussian or Laplace

        noised_params = {}
        for param_name, param_value in params.items():
            param_array = np.array(param_value)
            sensitivity = 1.0  # This would be calculated based on clipping bounds
            noise_scale = sensitivity / epsilon
            noise = np.random.laplace(0, noise_scale, param_array.shape)
            noised_params[param_name] = param_array + noise

        return noised_params

    def _encrypt_model_update(self, model_update, key):
        """Encrypt model update for secure transmission."""
        # This is a simplified implementation
        # In a real system, this would use proper encryption libraries

        # Convert model update to JSON string
        update_json = json.dumps(model_update)

        # Generate a random IV
        iv = os.urandom(16)

        # Create an AES cipher
        cipher = Cipher(algorithms.AES(key), modes.CFB(iv))
        encryptor = cipher.encryptor()

        # Encrypt the update
        ciphertext = encryptor.update(update_json.encode()) + encryptor.finalize()

        return {
            "iv": iv.hex(),
            "ciphertext": ciphertext.hex()
        }

    def _decrypt_model_update(self, encrypted_update, key):
        """Decrypt an encrypted model update."""
        # This is a simplified implementation

        # Extract IV and ciphertext
        iv = bytes.fromhex(encrypted_update["iv"])
        ciphertext = bytes.fromhex(encrypted_update["ciphertext"])

        # Create an AES cipher
        cipher = Cipher(algorithms.AES(key), modes.CFB(iv))
        decryptor = cipher.decryptor()

        # Decrypt the update
        plaintext = decryptor.update(ciphertext) + decryptor.finalize()

        # Parse the JSON
        return json.loads(plaintext.decode())

    def _log_event(self, event_type, data):
        """Log federated learning events."""
        log_entry = {
            "timestamp": time.time(),
            "task_id": self.task_id,
            "event_type": event_type,
            "round": self.round,
            "data": data
        }

        self.training_log.append(log_entry)

        # In a real implementation, this would be persisted to a secure audit log
        print(f"[FEDERATED] {event_type.upper()} - Task: {self.task_id}, Round: {self.round}")

6. Zero-Knowledge Proofs

6.1 Zero-Knowledge Proof Principles

  • Verification Without Disclosure: Prove a statement is true without revealing the underlying data
  • Completeness: If the statement is true, an honest verifier will be convinced
  • Soundness: If the statement is false, no cheating prover can convince the verifier
  • Zero-Knowledge: The verifier learns nothing beyond the validity of the statement
  • Non-Interactive: Proofs can be verified without interaction with the prover
  • Succinctness: Proofs are compact and quick to verify

6.2 Use Cases in Federated Collaboration

  • Compliance Verification: Prove regulatory compliance without revealing sensitive data
  • Model Validation: Verify model properties without exposing the model itself
  • Data Quality Assurance: Prove data meets quality standards without sharing raw data
  • Identity Verification: Authenticate organizations without revealing credentials
  • Audit Trail Verification: Prove audit trail integrity without exposing details

7. Security Considerations

7.1 Threat Model

  • Honest-but-Curious Participants: Organizations follow the protocol but may try to learn others' data
  • Malicious Participants: Organizations may deviate from the protocol to compromise security
  • External Attackers: Third parties may attempt to compromise the federated system
  • Insider Threats: Employees with access to organizational systems may misuse data
  • Infrastructure Vulnerabilities: Weaknesses in the underlying infrastructure

7.2 Security Best Practices

  • End-to-End Encryption: Encrypt all data in transit and at rest
  • Access Controls: Implement fine-grained permissions for all resources
  • Audit Logging: Maintain comprehensive logs of all operations
  • Secure Key Management: Use hardware security modules for key storage
  • Regular Security Audits: Conduct penetration testing and code reviews
  • Secure Multi-Party Computation: Use SMC for sensitive operations
  • Differential Privacy: Apply DP techniques to protect individual data points
  • Secure Enclaves: Use trusted execution environments for sensitive computations

8. Testing and Validation

8.1 Testing Strategies

  • Unit Testing: Test individual components in isolation
  • Integration Testing: Test interactions between components
  • End-to-End Testing: Test complete federated workflows
  • Security Testing: Verify security measures are effective
  • Performance Testing: Measure latency and throughput
  • Compliance Testing: Verify regulatory requirements are met

8.2 Validation Framework

  • Correctness Validation: Verify results match expected outcomes
  • Security Validation: Verify security measures are effective
  • Privacy Validation: Verify privacy guarantees are maintained
  • Performance Validation: Verify performance meets requirements
  • Compliance Validation: Verify regulatory requirements are met

9. Resources and References


This guide will evolve as the platform's federated collaboration capabilities expand. Contribute your insights and improvements to help build a robust federated collaboration ecosystem.