Multi-Modal Agent Development Guide
This guide provides best practices, patterns, and resources for developing multi-modal agents that can process text, vision, audio, and sensor data within the AI Agent Orchestration Platform.
1. Introduction to Multi-Modal Agents
Multi-modal agents extend beyond text-only interactions to process and generate content across different modalities:
- Vision Agents: Process images and video, perform object detection, image classification, OCR, etc.
- Audio Agents: Handle speech recognition, audio classification, sound event detection, etc.
- Sensor Data Agents: Process IoT telemetry, time-series data, environmental readings, etc.
- AR/VR Agents: Interact with immersive 3D environments and spatial computing.
- Robotics Agents: Interface with physical systems and actuators.
2. Architecture Patterns
2.1 Multi-Modal Agent Structure
multi-modal/
├── vision/
│ ├── agents/
│ │ ├── image_classifier.py
│ │ ├── object_detector.py
│ │ └── ocr_agent.py
│ ├── models/
│ │ └── pretrained/
│ └── utils/
│ ├── image_preprocessing.py
│ └── visualization.py
├── audio/
│ ├── agents/
│ │ ├── speech_recognizer.py
│ │ └── audio_classifier.py
│ ├── models/
│ └── utils/
├── sensor/
│ ├── agents/
│ ├── models/
│ └── utils/
└── integration/
├── multimodal_workflow.py
└── fusion_utils.py
2.2 Common Design Patterns
- Adapter Pattern: Standardize interfaces for different multi-modal agents.
- Pipeline Pattern: Chain preprocessing, inference, and postprocessing steps.
- Observer Pattern: Allow agents to subscribe to events from different modalities.
- Fusion Strategies: Early fusion (feature level), late fusion (decision level), hybrid approaches.
3. Vision Agent Development
3.1 Key Libraries and Frameworks
- Computer Vision: OpenCV, PIL/Pillow, scikit-image
- Deep Learning: TensorFlow, PyTorch, ONNX Runtime
- Pre-trained Models: YOLO, EfficientNet, ViT, CLIP
- OCR: Tesseract, EasyOCR, PaddleOCR
3.2 Vision Agent Template
from abc import ABC, abstractmethod
import numpy as np
from PIL import Image
class VisionAgent(ABC):
"""Base class for vision agents in the orchestration platform."""
def __init__(self, name, model_path=None):
self.name = name
self.model_path = model_path
self.model = self._load_model() if model_path else None
@abstractmethod
def _load_model(self):
"""Load the vision model."""
pass
@abstractmethod
def preprocess(self, image):
"""Preprocess the input image."""
pass
@abstractmethod
def predict(self, processed_image):
"""Run inference on the processed image."""
pass
@abstractmethod
def postprocess(self, prediction):
"""Convert raw predictions to structured output."""
pass
def process(self, image_path=None, image=None):
"""Process an image and return results."""
if image_path:
image = Image.open(image_path)
processed_image = self.preprocess(image)
prediction = self.predict(processed_image)
result = self.postprocess(prediction)
return {
"agent_name": self.name,
"result": result,
"confidence": self._get_confidence(prediction),
"metadata": self._get_metadata(image)
}
def _get_confidence(self, prediction):
"""Extract confidence score from prediction."""
return None
def _get_metadata(self, image):
"""Extract metadata from the image."""
return {
"width": image.width if hasattr(image, "width") else None,
"height": image.height if hasattr(image, "height") else None,
"format": image.format if hasattr(image, "format") else None
}
4. Audio Agent Development
4.1 Key Libraries and Frameworks
- Audio Processing: Librosa, PyAudio, SoundFile
- Speech Recognition: Whisper, DeepSpeech, Wav2Vec
- Audio Classification: VGGish, PANNs, AudioSet
- Music Analysis: Essentia, Madmom
4.2 Audio Agent Template
from abc import ABC, abstractmethod
import numpy as np
import librosa
class AudioAgent(ABC):
"""Base class for audio agents in the orchestration platform."""
def __init__(self, name, model_path=None, sample_rate=22050):
self.name = name
self.model_path = model_path
self.sample_rate = sample_rate
self.model = self._load_model() if model_path else None
@abstractmethod
def _load_model(self):
"""Load the audio model."""
pass
@abstractmethod
def preprocess(self, audio):
"""Preprocess the input audio."""
pass
@abstractmethod
def predict(self, processed_audio):
"""Run inference on the processed audio."""
pass
@abstractmethod
def postprocess(self, prediction):
"""Convert raw predictions to structured output."""
pass
def process(self, audio_path=None, audio=None):
"""Process audio and return results."""
if audio_path:
audio, _ = librosa.load(audio_path, sr=self.sample_rate)
processed_audio = self.preprocess(audio)
prediction = self.predict(processed_audio)
result = self.postprocess(prediction)
return {
"agent_name": self.name,
"result": result,
"confidence": self._get_confidence(prediction),
"metadata": self._get_metadata(audio)
}
def _get_confidence(self, prediction):
"""Extract confidence score from prediction."""
return None
def _get_metadata(self, audio):
"""Extract metadata from the audio."""
return {
"duration": len(audio) / self.sample_rate if audio is not None else None,
"sample_rate": self.sample_rate
}
5. Sensor Data Agent Development
5.1 Key Libraries and Frameworks
- Data Processing: NumPy, Pandas, SciPy
- Time Series Analysis: Statsmodels, Prophet, Kats
- Anomaly Detection: PyOD, STUMPY, TensorFlow
- IoT Integration: MQTT, Paho, Azure IoT
5.2 Sensor Data Agent Template
from abc import ABC, abstractmethod
import numpy as np
import pandas as pd
class SensorAgent(ABC):
"""Base class for sensor data agents in the orchestration platform."""
def __init__(self, name, model_path=None):
self.name = name
self.model_path = model_path
self.model = self._load_model() if model_path else None
@abstractmethod
def _load_model(self):
"""Load the sensor data model."""
pass
@abstractmethod
def preprocess(self, data):
"""Preprocess the input sensor data."""
pass
@abstractmethod
def predict(self, processed_data):
"""Run inference on the processed data."""
pass
@abstractmethod
def postprocess(self, prediction):
"""Convert raw predictions to structured output."""
pass
def process(self, data_path=None, data=None):
"""Process sensor data and return results."""
if data_path:
data = pd.read_csv(data_path) if data_path.endswith('.csv') else pd.read_json(data_path)
processed_data = self.preprocess(data)
prediction = self.predict(processed_data)
result = self.postprocess(prediction)
return {
"agent_name": self.name,
"result": result,
"confidence": self._get_confidence(prediction),
"metadata": self._get_metadata(data)
}
def _get_confidence(self, prediction):
"""Extract confidence score from prediction."""
return None
def _get_metadata(self, data):
"""Extract metadata from the sensor data."""
if isinstance(data, pd.DataFrame):
return {
"shape": data.shape,
"columns": list(data.columns),
"time_range": [data.index.min(), data.index.max()] if isinstance(data.index, pd.DatetimeIndex) else None
}
return {}
6. Multi-Modal Integration
6.1 Fusion Strategies
- Early Fusion: Combine raw features from different modalities before processing.
- Late Fusion: Process each modality separately and combine results.
- Hybrid Fusion: Combine at multiple levels of processing.
6.2 Integration Example
class MultiModalWorkflow:
"""Orchestrate multiple agents across different modalities."""
def __init__(self, vision_agents=None, audio_agents=None, sensor_agents=None, text_agents=None):
self.vision_agents = vision_agents or []
self.audio_agents = audio_agents or []
self.sensor_agents = sensor_agents or []
self.text_agents = text_agents or []
def process_multi_modal_input(self, vision_input=None, audio_input=None, sensor_input=None, text_input=None):
"""Process inputs from multiple modalities and return combined results."""
results = {
"vision": {},
"audio": {},
"sensor": {},
"text": {},
"integrated_result": None
}
# Process each modality
if vision_input and self.vision_agents:
for agent in self.vision_agents:
results["vision"][agent.name] = agent.process(image=vision_input)
if audio_input and self.audio_agents:
for agent in self.audio_agents:
results["audio"][agent.name] = agent.process(audio=audio_input)
if sensor_input and self.sensor_agents:
for agent in self.sensor_agents:
results["sensor"][agent.name] = agent.process(data=sensor_input)
if text_input and self.text_agents:
for agent in self.text_agents:
results["text"][agent.name] = agent.process(text=text_input)
# Integrate results using fusion strategy
results["integrated_result"] = self._fuse_results(results)
return results
def _fuse_results(self, modality_results):
"""Implement fusion strategy to combine results from different modalities."""
# Implement your fusion strategy here
# This could be a weighted average, voting, or more complex integration
return {"fusion_type": "late_fusion", "combined_result": "..."}
7. Visualization and Monitoring
7.1 Visualization Tools
- Image Visualization: Matplotlib, Seaborn, Plotly
- Audio Visualization: Librosa plots, Waveform displays
- Sensor Data Visualization: Time-series plots, Heatmaps
- 3D Visualization: Three.js, Babylon.js, Unity
7.2 Monitoring Multi-Modal Agents
- Performance Metrics: Accuracy, precision, recall, F1-score
- Resource Usage: CPU, GPU, memory, bandwidth
- Latency Tracking: Processing time per modality
- Error Analysis: Confusion matrices, error distributions
8. Testing Multi-Modal Agents
8.1 Test Data Sources
- Vision: ImageNet, COCO, Open Images, custom datasets
- Audio: AudioSet, Common Voice, ESC-50, custom recordings
- Sensor: UCI Repository, Kaggle datasets, synthetic data
8.2 Testing Strategies
- Unit Testing: Test individual components (preprocessing, inference, etc.)
- Integration Testing: Test end-to-end workflows with multiple modalities
- Performance Testing: Benchmark processing time and resource usage
- Edge Case Testing: Test with challenging inputs (low light, noisy audio, etc.)
9. Deployment Considerations
- Model Optimization: Quantization, pruning, knowledge distillation
- Hardware Acceleration: GPU, TPU, edge devices (Jetson, Coral)
- Containerization: Docker, Kubernetes for scalable deployment
- Edge Deployment: Optimize for resource-constrained environments
10. Resources and References
- Vision: OpenCV Documentation, PyTorch Vision
- Audio: Librosa Documentation, Whisper
- Sensor Data: Pandas Documentation, PyOD
- Multi-Modal Learning: Hugging Face Transformers, CLIP
This guide will evolve as the platform's multi-modal capabilities expand. Contribute your insights and improvements to help build a robust multi-modal agent ecosystem.