Scaling Strategies
This document outlines the scaling strategies for the AI Agent Orchestration Platform.
Overview
The platform is designed to scale horizontally and vertically to handle increasing workloads, user bases, and data volumes. This document covers scaling approaches for different components, load balancing, auto-scaling, and performance optimization.
Scaling Principles
The platform follows these scaling principles:
- Horizontal Scaling: Add more instances to distribute load
- Vertical Scaling: Increase resources for existing instances
- Stateless Design: Enable easy scaling of stateless components
- Data Partitioning: Distribute data across multiple instances
- Caching: Reduce load on backend systems
- Asynchronous Processing: Decouple time-intensive operations
- Load Balancing: Distribute traffic across instances
- Auto-Scaling: Automatically adjust resources based on demand
Component Scaling Strategies
API Services
Scaling strategy for API services:
- Horizontal Scaling: Deploy multiple API service instances
- Load Balancing: Distribute requests across instances
- Auto-Scaling: Adjust instance count based on CPU/memory usage and request rate
- Rate Limiting: Prevent abuse and ensure fair resource allocation
- Connection Pooling: Efficiently manage database connections
Example API service scaling configuration:
# api-scaling.yaml
api_service:
deployment:
min_replicas: 3
max_replicas: 20
target_cpu_utilization: 70
target_memory_utilization: 80
resources:
requests:
cpu: 500m
memory: 512Mi
limits:
cpu: 2000m
memory: 2Gi
load_balancing:
algorithm: round_robin
session_affinity: false
health_check:
path: /health
port: 8000
initial_delay: 30s
period: 10s
rate_limiting:
requests_per_minute: 1000
burst: 100
Workflow Engine
Scaling strategy for the workflow engine:
- Horizontal Scaling: Deploy multiple workflow engine instances
- Workflow Partitioning: Distribute workflows across instances
- State Management: Maintain workflow state in shared storage
- Resource Allocation: Allocate resources based on workflow complexity
- Priority Queuing: Process workflows based on priority
Example workflow engine scaling configuration:
# workflow-engine-scaling.yaml
workflow_engine:
deployment:
min_replicas: 2
max_replicas: 10
target_cpu_utilization: 70
target_memory_utilization: 80
resources:
requests:
cpu: 1000m
memory: 1Gi
limits:
cpu: 4000m
memory: 4Gi
partitioning:
strategy: consistent_hashing
partitions: 10
state_management:
storage: postgresql
cache: redis
queuing:
high_priority_queue_size: 100
normal_priority_queue_size: 500
low_priority_queue_size: 1000
Agent Execution
Scaling strategy for agent execution:
- Dynamic Provisioning: Create agent instances on demand
- Resource Isolation: Run agents in isolated containers
- Resource Limits: Set CPU, memory, and storage limits
- Execution Pooling: Reuse agent instances when possible
- Batch Processing: Process multiple inputs in batch when appropriate
Example agent execution scaling configuration:
# agent-execution-scaling.yaml
agent_execution:
deployment:
strategy: dynamic
idle_pool_size: 5
max_concurrent_agents: 100
resources:
default:
cpu: 500m
memory: 512Mi
ephemeral_storage: 1Gi
large:
cpu: 2000m
memory: 4Gi
ephemeral_storage: 5Gi
gpu:
cpu: 1000m
memory: 2Gi
gpu: 1
ephemeral_storage: 10Gi
isolation:
type: container
runtime: docker
batch_processing:
enabled: true
max_batch_size: 10
batch_timeout: 5s
Database
Scaling strategy for the database:
- Read Replicas: Distribute read queries across replicas
- Connection Pooling: Efficiently manage database connections
- Sharding: Partition data across multiple database instances
- Caching: Cache frequently accessed data
- Query Optimization: Optimize database queries for performance
Example database scaling configuration:
# database-scaling.yaml
database:
primary:
resources:
cpu: 4000m
memory: 16Gi
storage: 100Gi
read_replicas:
count: 3
resources:
cpu: 2000m
memory: 8Gi
storage: 100Gi
connection_pooling:
max_connections: 500
min_connections: 10
max_client_connections: 100
sharding:
enabled: false # Enable for very large deployments
shards: 4
strategy: hash
caching:
enabled: true
type: redis
ttl: 300s
Storage
Scaling strategy for storage:
- Object Storage: Use scalable object storage for files
- Content Delivery Network: Distribute static content
- Storage Tiering: Move less frequently accessed data to lower-cost storage
- Data Lifecycle Management: Archive or delete old data
- Compression: Reduce storage requirements
Example storage scaling configuration:
# storage-scaling.yaml
storage:
object_storage:
provider: s3
bucket: meta-agent-files
region: us-west-2
cdn:
enabled: true
provider: cloudfront
ttl: 86400
tiering:
hot_tier:
storage_class: standard
max_age: 30d
warm_tier:
storage_class: infrequent_access
max_age: 90d
cold_tier:
storage_class: glacier
max_age: 365d
lifecycle:
temporary_files_retention: 24h
execution_results_retention: 90d
audit_logs_retention: 365d
compression:
enabled: true
algorithm: gzip
min_size: 1KB
Load Balancing
Load Balancer Configuration
The platform uses load balancers to distribute traffic:
- Layer 7 Load Balancing: HTTP/HTTPS traffic
- Layer 4 Load Balancing: TCP/UDP traffic
- Global Load Balancing: Distribute traffic across regions
- Health Checks: Verify instance health
- SSL Termination: Handle SSL/TLS connections
Example load balancer configuration:
# load-balancer.yaml
load_balancers:
- name: api-lb
type: layer7
protocol: https
port: 443
algorithm: least_connections
ssl_certificate: meta-agent.example.com
backends:
- service: api
port: 8000
weight: 1
health_check:
path: /health
port: 8000
interval: 10s
timeout: 5s
healthy_threshold: 2
unhealthy_threshold: 3
- name: workflow-lb
type: layer7
protocol: https
port: 8443
algorithm: round_robin
ssl_certificate: workflow.meta-agent.example.com
backends:
- service: workflow-engine
port: 8080
weight: 1
health_check:
path: /health
port: 8080
interval: 10s
timeout: 5s
healthy_threshold: 2
unhealthy_threshold: 3
Auto-Scaling
Auto-Scaling Configuration
The platform implements auto-scaling:
- Horizontal Pod Autoscaler: Scale Kubernetes pods
- Vertical Pod Autoscaler: Adjust pod resources
- Cluster Autoscaler: Scale Kubernetes nodes
- Custom Metrics: Scale based on custom metrics
- Scheduled Scaling: Scale based on time of day
Example auto-scaling configuration:
# auto-scaling.yaml
horizontal_pod_autoscalers:
- name: api-hpa
target:
kind: Deployment
name: api
min_replicas: 3
max_replicas: 20
metrics:
- type: Resource
resource:
name: cpu
target_average_utilization: 70
- type: Resource
resource:
name: memory
target_average_utilization: 80
- name: workflow-engine-hpa
target:
kind: Deployment
name: workflow-engine
min_replicas: 2
max_replicas: 10
metrics:
- type: Resource
resource:
name: cpu
target_average_utilization: 70
- type: Pods
pods:
metric_name: workflow_queue_length
target_average_value: 10
vertical_pod_autoscaler:
enabled: true
targets:
- name: api
update_mode: Auto
resource_policy:
container_policies:
- container_name: api
min_allowed:
cpu: 500m
memory: 512Mi
max_allowed:
cpu: 4000m
memory: 4Gi
- name: workflow-engine
update_mode: Auto
resource_policy:
container_policies:
- container_name: workflow-engine
min_allowed:
cpu: 1000m
memory: 1Gi
max_allowed:
cpu: 8000m
memory: 8Gi
cluster_autoscaler:
enabled: true
min_nodes: 3
max_nodes: 20
scale_down_delay: 10m
scale_down_unneeded_time: 10m
scale_down_utilization_threshold: 0.5
scheduled_scaling:
- name: business-hours
schedule: "0 8 * * 1-5" # 8:00 AM Monday-Friday
min_replicas:
api: 5
workflow-engine: 3
- name: non-business-hours
schedule: "0 18 * * 1-5" # 6:00 PM Monday-Friday
min_replicas:
api: 2
workflow-engine: 1
Caching
Caching Strategy
The platform implements caching:
- Application Cache: Cache application data
- Database Cache: Cache database queries
- Content Cache: Cache static content
- Distributed Cache: Share cache across instances
- Cache Invalidation: Update cache when data changes
Example caching configuration:
# caching.yaml
caches:
- name: application-cache
type: redis
endpoints:
- host: redis-master
port: 6379
replicas: 2
eviction_policy: volatile-lru
max_memory: 1GB
ttl: 300s
- name: database-cache
type: redis
endpoints:
- host: redis-db-cache
port: 6379
replicas: 2
eviction_policy: allkeys-lru
max_memory: 2GB
ttl: 600s
- name: content-cache
type: cdn
provider: cloudfront
origins:
- domain: static.meta-agent.example.com
path: /assets
ttl: 86400s
invalidation_paths:
- /assets/js/*
- /assets/css/*
- /assets/images/*
cache_keys:
- prefix: user
pattern: "user:{id}"
ttl: 3600s
- prefix: workflow
pattern: "workflow:{id}"
ttl: 300s
- prefix: agent
pattern: "agent:{id}"
ttl: 3600s
- prefix: execution
pattern: "execution:{id}"
ttl: 60s
cache_invalidation:
- event: user_update
keys:
- "user:{id}"
- "user_permissions:{id}"
- event: workflow_update
keys:
- "workflow:{id}"
- "workflow_list"
- event: agent_update
keys:
- "agent:{id}"
- "agent_list"
Performance Optimization
Performance Tuning
The platform implements performance optimization:
- Code Optimization: Optimize application code
- Database Optimization: Optimize database queries and indexes
- Network Optimization: Reduce network latency and overhead
- Resource Allocation: Allocate resources based on workload
- Monitoring and Profiling: Identify performance bottlenecks
Example performance optimization configuration:
# performance-optimization.yaml
application:
timeouts:
http_request: 30s
database_query: 5s
cache_operation: 1s
agent_execution: 300s
connection_pools:
database:
max_connections: 100
min_connections: 10
max_idle_time: 300s
http_client:
max_connections: 200
max_connections_per_host: 20
keep_alive: 300s
concurrency:
max_goroutines: 10000
worker_pool_size: 100
database:
query_optimization:
slow_query_threshold: 1s
log_slow_queries: true
indexes:
- table: workflows
columns: [user_id, status, created_at]
- table: workflow_executions
columns: [workflow_id, status, started_at]
- table: agents
columns: [type, status, created_at]
connection_tuning:
max_connections: 500
shared_buffers: 4GB
work_mem: 64MB
maintenance_work_mem: 256MB
effective_cache_size: 12GB
network:
compression:
enabled: true
min_size: 1KB
http2:
enabled: true
keepalive:
enabled: true
timeout: 300s
tcp_tuning:
tcp_keepalive_time: 300
tcp_keepalive_intvl: 75
tcp_keepalive_probes: 9
Multi-Region Scaling
Global Deployment
The platform supports multi-region deployment:
- Regional Deployments: Deploy in multiple regions
- Global Load Balancing: Route users to nearest region
- Data Replication: Replicate data across regions
- Disaster Recovery: Recover from regional outages
- Compliance: Meet data residency requirements
Example multi-region configuration:
# multi-region.yaml
regions:
- name: us-west
primary: true
zone: us-west-2
components:
- api
- workflow-engine
- database-primary
- cache
- name: us-east
primary: false
zone: us-east-1
components:
- api
- workflow-engine
- database-replica
- cache
- name: eu-west
primary: false
zone: eu-west-1
components:
- api
- workflow-engine
- database-replica
- cache
global_load_balancer:
type: dns
provider: route53
routing_policy: latency
health_checks:
path: /health
interval: 30s
failure_threshold: 3
data_replication:
database:
type: postgresql
replication_mode: asynchronous
primary_region: us-west
replica_regions: [us-east, eu-west]
cache:
type: redis
replication_mode: active-active
regions: [us-west, us-east, eu-west]
object_storage:
type: s3
replication_mode: cross-region
primary_region: us-west
replica_regions: [us-east, eu-west]
disaster_recovery:
rto: 1h # Recovery Time Objective
rpo: 15m # Recovery Point Objective
failover:
automatic: true
verification: true
fallback: true
Edge Scaling
Edge Deployment Scaling
The platform supports edge deployment scaling:
- Edge Locations: Deploy to edge locations
- Content Delivery: Deliver content from edge
- Edge Computing: Process data at the edge
- Edge Caching: Cache data at the edge
- Edge-to-Core Synchronization: Sync edge and core data
Example edge scaling configuration:
# edge-scaling.yaml
edge_locations:
- name: us-east
provider: cloudflare
services: [content-delivery, edge-computing]
- name: us-west
provider: cloudflare
services: [content-delivery, edge-computing]
- name: eu-west
provider: cloudflare
services: [content-delivery, edge-computing]
- name: asia-east
provider: cloudflare
services: [content-delivery, edge-computing]
content_delivery:
enabled: true
cache_control:
static_assets: "public, max-age=86400"
api_responses: "private, max-age=60"
dynamic_content: "no-store"
edge_computing:
enabled: true
functions:
- name: request-validation
path: /api/*
script: |
addEventListener('fetch', event => {
event.respondWith(handleRequest(event.request))
})
async function handleRequest(request) {
// Validate request
// ...
return fetch(request)
}
- name: response-transformation
path: /api/data/*
script: |
addEventListener('fetch', event => {
event.respondWith(handleRequest(event.request))
})
async function handleRequest(request) {
const response = await fetch(request)
const data = await response.json()
// Transform data
// ...
return new Response(JSON.stringify(data), {
headers: { 'Content-Type': 'application/json' }
})
}
edge_caching:
enabled: true
cache_rules:
- pattern: /api/workflows
ttl: 60s
- pattern: /api/agents
ttl: 300s
- pattern: /assets/*
ttl: 86400s
Scaling Scripts
Scripts for scaling management are located in /infra/scripts/:
scale_up.sh- Scale up resourcesscale_down.sh- Scale down resourcesperformance_test.sh- Test performance under loadoptimize_database.sh- Optimize database performancecache_warmup.sh- Warm up cache with frequently accessed data
Example scaling script:
#!/bin/bash
# scale_up.sh - Scale up resources
COMPONENT=$1
REPLICAS=$2
if [ -z "$COMPONENT" ] || [ -z "$REPLICAS" ]; then
echo "Usage: ./scale_up.sh [component] [replicas]"
echo "Example: ./scale_up.sh api 10"
exit 1
fi
echo "Scaling up $COMPONENT to $REPLICAS replicas..."
# Scale up the component
kubectl scale deployment $COMPONENT --replicas=$REPLICAS
# Wait for scaling to complete
kubectl rollout status deployment/$COMPONENT
echo "Scaling complete for $COMPONENT"
Best Practices
- Design for horizontal scaling
- Implement auto-scaling
- Use load balancing
- Optimize database queries
- Implement caching
- Monitor performance
- Test scalability
- Plan for future growth
- Document scaling procedures
- Regularly review and optimize
References
- Deployment Infrastructure
- Containerization
- Monitoring Infrastructure
- Database Infrastructure
- Edge Infrastructure
- Architecture Design
Last updated: 2025-04-18