Skip to content

Backend Implementation Strategy

This document outlines the backend implementation strategy for the Meta Agent Platform, including architecture, technical dependencies, and development approach.

Overview

The Meta Agent Platform backend is designed as a modular, scalable system that supports various agent execution models, workflow orchestration, and other core features. This reference guide provides a comprehensive overview of the backend architecture, technical dependencies, and implementation strategy.

Backend Architecture

Core Components

  1. API Layer: RESTful endpoints for frontend communication
  2. Workflow Orchestration Engine: Manages workflow execution and state
  3. Agent Execution Service: Handles different agent execution types
  4. Authentication & Authorization: User and service authentication
  5. Data Storage: Persistence for workflows, agents, runs, etc.
  6. Observability: Logging, metrics, and tracing

Architecture Diagram

┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│                 │     │                 │     │                 │
│  Frontend UI    │────▶│  API Layer      │────▶│  Data Storage   │
│  (SvelteKit)    │     │  (FastAPI)      │     │  (PostgreSQL)   │
│                 │     │                 │     │                 │
└─────────────────┘     └────────┬────────┘     └─────────────────┘
┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│                 │     │                 │     │                 │
│  Agent Registry │◀───▶│  Workflow       │────▶│  Observability  │
│  & Execution    │     │  Orchestration  │     │  (OpenTelemetry)│
│                 │     │  (Temporal)     │     │                 │
└─────────────────┘     └─────────────────┘     └─────────────────┘
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│             │ │             │ │             │
│  Docker     │ │  API-Based  │ │  Framework  │
│  Agents     │ │  Agents     │ │  Agents     │
│             │ │             │ │             │
└─────────────┘ └─────────────┘ └─────────────┘

Technical Dependencies

Core Backend Framework

  • FastAPI (v0.104+): For building high-performance, type-safe APIs
  • Pydantic (v2.5+): For data validation and settings management
  • SQLAlchemy (v2.0+): For ORM and database interactions
  • Alembic: For database migrations
  • httpx (v0.24+): For making HTTP requests to external services

Database

  • PostgreSQL (v15+): Primary relational database
  • pgvector extension: For vector similarity search (AI embeddings)
  • pgsodium extension: For advanced encryption features
  • PostgREST: For automatic API generation (optional)

Workflow Orchestration

  • Temporal.io: For reliable workflow orchestration
  • Temporal Python SDK: For integrating with Temporal
  • Temporal Server: For workflow execution and state management

Agent Execution

  • Docker SDK for Python: For managing Docker containers
  • A2A Protocol Client: For interacting with A2A-compatible agents
  • API Client Libraries: For API-based agent execution

Authentication & Authorization

  • Keycloak (v23+): For authentication and identity management
  • Keycloak Python SDK: For backend integration

Caching & Messaging

  • Redis (v7+): For caching and pub/sub messaging
  • Celery (v5.3+): For background task processing (optional)

Observability

  • OpenTelemetry (v1.19+): For distributed tracing
  • Prometheus Client: For metrics collection
  • Langfuse: For LLM observability
  • Structlog: For structured logging

Implementation Strategy

Phase 1: Foundation (4-6 weeks)

  1. Project Setup
  2. Initialize FastAPI project structure
  3. Configure PostgreSQL with required extensions
  4. Set up authentication with Keycloak
  5. Implement basic API endpoints

  6. Core Data Models

  7. Define SQLAlchemy models for:

    • Users and workspaces
    • Agents and agent configurations
    • Workflows and workflow definitions
    • Workflow runs and execution logs
  8. Basic API Layer

  9. Implement CRUD operations for agents
  10. Implement CRUD operations for workflows
  11. Add basic authentication and authorization

Phase 2: Workflow Orchestration (4-6 weeks)

  1. Temporal Integration
  2. Set up Temporal server
  3. Implement workflow definitions in Temporal
  4. Create workflow execution service

  5. Agent Execution Framework

  6. Implement Docker container execution adapter
  7. Implement API-based agent adapter
  8. Create basic A2A protocol adapter

  9. Workflow Management

  10. Implement workflow versioning
  11. Add workflow validation
  12. Create workflow execution history

Phase 3: Advanced Features (6-8 weeks)

  1. HITL Integration
  2. Implement task queue for human review
  3. Add notification system
  4. Create approval workflows

  5. Enhanced Agent Support

  6. Implement full A2A protocol support
  7. Add multi-modal agent execution
  8. Create agent marketplace integration

  9. Observability

  10. Implement comprehensive logging
  11. Add metrics collection
  12. Set up distributed tracing
  13. Integrate LLM observability

Application Structure

backend/
├── app/
│   ├── api/
│   │   ├── v1/
│   │   │   ├── agents.py
│   │   │   ├── workflows.py
│   │   │   ├── runs.py
│   │   │   ├── hitl.py
│   │   │   └── users.py
│   │   └── dependencies.py
│   ├── core/
│   │   ├── config.py
│   │   ├── security.py
│   │   └── logging.py
│   ├── db/
│   │   ├── base.py
│   │   ├── session.py
│   │   └── init_db.py
│   ├── models/
│   │   ├── agent.py
│   │   ├── workflow.py
│   │   ├── run.py
│   │   └── user.py
│   ├── schemas/
│   │   ├── agent.py
│   │   ├── workflow.py
│   │   ├── run.py
│   │   └── user.py
│   ├── services/
│   │   ├── agent_execution/
│   │   │   ├── docker_adapter.py
│   │   │   ├── api_adapter.py
│   │   │   └── a2a_adapter.py
│   │   ├── workflow/
│   │   │   ├── temporal_client.py
│   │   │   ├── workflow_manager.py
│   │   │   └── workflow_validator.py
│   │   └── hitl/
│   │       ├── task_queue.py
│   │       └── notification.py
│   └── main.py
├── alembic/
│   ├── versions/
│   └── alembic.ini
├── tests/
│   ├── api/
│   ├── services/
│   └── conftest.py
├── docker-compose.yml
├── Dockerfile
├── pyproject.toml
└── README.md

Development and Deployment

Local Development Setup

Use Docker Compose for local development:

version: '3.8'

services:
  postgres:
    image: postgres:15
    environment:
      POSTGRES_USER: postgres
      POSTGRES_PASSWORD: postgres
      POSTGRES_DB: meta_agent_platform
    ports:
      - "5432:5432"
    volumes:
      - postgres_data:/var/lib/postgresql/data

  redis:
    image: redis:7
    ports:
      - "6379:6379"

  temporal:
    image: temporalio/auto-setup:1.20.0
    environment:
      - CASSANDRA_SEEDS=temporal-cassandra
      - DYNAMIC_CONFIG_FILE_PATH=config/dynamicconfig/development.yaml
    ports:
      - "7233:7233"
    depends_on:
      - temporal-cassandra

  temporal-cassandra:
    image: cassandra:3.11
    ports:
      - "9042:9042"
    volumes:
      - temporal_cassandra_data:/var/lib/cassandra

  temporal-ui:
    image: temporalio/ui:2.10.3
    environment:
      - TEMPORAL_ADDRESS=temporal:7233
    ports:
      - "8088:8080"
    depends_on:
      - temporal

  api:
    build:
      context: .
      dockerfile: Dockerfile
    command: uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload
    volumes:
      - .:/app
    ports:
      - "8000:8000"
    environment:
      - DATABASE_URL=postgresql://postgres:postgres@postgres:5432/meta_agent_platform
      - REDIS_URL=redis://redis:6379/0
      - TEMPORAL_SERVER_URL=temporal:7233
    depends_on:
      - postgres
      - redis
      - temporal

volumes:
  postgres_data:
  temporal_cassandra_data:

Deployment Options

Based on the project documentation, several deployment options are available:

  1. Docker Compose: For simple self-hosted deployments
  2. Kubernetes: For scalable, production deployments
  3. Cloudflare Workers/Pages: For lightweight components
  4. SST.dev: For AWS-based fragmented deployment

For MVP, start with a simple Docker Compose deployment and then evolve to a more sophisticated approach as needed.

Technical Challenges and Considerations

  1. Docker Execution Security: Ensure proper isolation and resource limits for Docker-based agent execution.

  2. A2A Protocol Evolution: The A2A/Open Agent Protocol is still evolving, so design your adapter with flexibility to accommodate changes.

  3. Database Schema Evolution: Use Alembic for database migrations to manage schema changes over time.

  4. Authentication Integration: Properly integrate Keycloak for secure authentication and identity management.

  5. Temporal Learning Curve: Temporal has a learning curve, so allocate time for the team to become familiar with its concepts.

  6. Observability Setup: Implement comprehensive logging, metrics, and tracing from the start to make debugging easier.

MVP Approach

For the MVP, focus on:

  1. Core Functionality: Implement the essential features needed for basic agent orchestration.

  2. Simplified Architecture: Start with a monolithic approach before moving to microservices.

  3. Mock Data: Use mock data for initial development and testing.

  4. Minimal Dependencies: Start with the essential dependencies and add more as needed.

  5. Iterative Development: Build and test in small increments, focusing on one component at a time.

Conclusion

The backend implementation strategy outlined in this document provides a comprehensive roadmap for developing the Meta Agent Platform backend. By following this approach, you can build a robust, scalable, and maintainable backend that supports the platform's core features and can evolve as the platform grows.


Last updated: 2024-05-20